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boundary condition E, =0

B(ry)=0=E,(r,) or J,(Vy*—k?r,)=0. (76)

We consider now the case m=0. Comparing (64), (66),

(68), (71), (73), and (75) with (52)-(54) we find that the

latter solution corresponds to a superposition of the TE

parts of B, and B, and the TM part of B,. We use,

however, only the last term giving from rB_, =const for the
“mode” k=0

(77)

(correspohding to a waveguide with cross section = const)
and for k=1 (TM, mode) we obtain

rJl(\/y2 -1 r) cos z=const

rJy(yr)=const

(78)

which describes the surfaces on which B, =E_ =0 and into
which metallic walls may be inserted without disturbing the

field patterns.
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Analysis and Design of TE,,-to-HE
Corrugated Cylindrical Waveguide Mode
Converters

Abstract— A theoretical parametric study is given of a TE;-to-HE;
mode converter consisting of a section of cylindrical corrugated waveguide
with varying slot depth. The analysis makes use of modal field-matching

" techniques to determine the scatter matrix of the mode converter from
which we deduce its propagation properties. It is shown that a mode
converter consisting of only five slots achieves a return loss better than 30
dB over the band 2.7<<ka<3.8 (where a is the internal radius of the
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waveguide) with the HE ;; mode in the balanced condition at ka=2.9. The
predicted results are in very good agreement with experimental data,

I. INTRODUCTION

N DESIGNING corrugated horns which use a section
of cylindrical corrugated waveguide at the input, it is
necessary to study the transition from a smooth-walled
cylindrical waveguide supporting the TE,;; mode to a cor-
rugated cylindrical waveguide where the HE |, hybrid mode
is supported. With the corrugated surface represented by
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an anisotropic surface impedance, the propagation behav-
ior through an abrupt junction between smooth-walled and
corrugated guides can be solved either by numerical proce-
dures using mode-matching techniques [1], [2] or by an
analytical approach using the Wiener—Hopf method [3].
Such a junction between the two guides however often
yields unacceptably low return-loss values for the TE,
mode. To achieve better mode conversion a corrugated
transition section can be used where, by gradual variation
of the slot depth, the longitudinal surface reactance x, is
made to change smoothly from zero at the smooth-walled
input guide to the high value required in the corrugated
output waveguide [4]. Our purpose here is to optimize the
design of such a converter to achieve maximum mode
conversion (i.e., minimum reflection of the TE,, mode)
over as wide a band as possible.

One method of analysing the performance of the TE-to
-HE,, corrugated waveguide mode converter is to assume a
waveguide with smoothly varying impedance of the walls
[5]. The pitch of the corrugations however must be small
compared to a wavelength (particularly where the imped-
ance Is changing rapidly) before this assumption is valid.
However, in our case we wish to minimize the number of
slots required in the mode converter and therefore we have
taken a different approach in eur analysis. First we de-
termine the individual scatter matrices for each of the
changes in waveguide cross section and for each of the
short lengths of waveguide separating them which go to
make up the slots and flanges of the corrugated transition
section. Then by progressively cascading the scatter
matrices through this section we obtain an overall scatter
matrix from which we can determine the propagation
properties of the mode converter.

Objections to such a scheme could be the need for
excessive computer time and the possibility of accumula-
tive errors occurring in solving for the overall scatter
matrix. Fortunately these difficulties do not arise since all
of the integrals required in the formulation can be evaluated
analytically (as shown in Section III below), and only a
modest number of waveguide modes are required to achieve
satisfactory convergence.

II. FORMULATION

The mode converter to be analysed is shown in Fig. 1(a),
where, following the smooth-walled cylindrical input wave-
guide supporting the TE,; mode, there is a section contain-
ing L slots. The depth, width, and separation of these slots
are to be determined from our analysis to give the opti-
mum mode conversion to the HE,; mode in the corrugated
output waveguide following the Lth slot. As mentioned
above, we consider each change in waveguide cross section
in isolation (Fig. 1(b)) to determine its scatter matrix. Since
the waveguide discontinuity problem as shown in Fig. 1(b)
has been solved in [6]-[8] using mode-matching methods,
we shall only briefly describe the procedure here before
giving the scatter matrix for the junction between two
circular waveguides.
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Fig. 1. Cross-sectional view of circular waveguides. (a) Corrugated mode
converter section at the junction between a smooth-walled and corru-
gated waveguide. (b) Junction between two smooth-walled waveguides
of differing radius.

In region I of Fig. 1(b) let the transverse field £, H; at
z=0 be represented by the modal solution

M
£ = 2 (AmI +Bm1)€m1
=1

M
I__iI = 2 (AmI _Bml)hml

m=1

(1)
where e, h,,; are transverse modal fields (to be described
in Section III) and 4,,;, B,,; are the forward and reflected
modal coefficients to be determined. The upper limit M is
to be made sufficiently large to ensure convergence.

Similarly for region II we have the transverse field at

z=0 given by

N
Ey= E (Ann+BnH)€nn

n=1

(2)

where A,y;, B,;; are the forward and reflected modal coeffi-

N
Hy= 2 (AnII — B,k

n=1
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cients looking into the junction at z=0,

Let sy (spy) be the cross-sectional area of the waveguide
of radius a; (ay;). Making use of the orthogonality of the
waveguide modes, the continuity of fields over s;, and the
boundary conditions over s;; —s; (assuming that sy =s),
we obtain the following pair of simultaneous matrix equa-
tions

I~
TN

[

ET[EII_éII]Zé[él_EI]

+£1]:g[én+éu]

(3)
where A, B; are column matrices of M elements contain-
ing the unknown modal coefficients (A --- Ay,
(B Byy) of region I. Similarly Ay, By are column
matrices of N elements containing the unknown modal
coefficients in region II. P is an NXM matrix, Q is an
N X N diagonal matrix and R is an M X M

diagonal matrix. The elements in these last three matrices
are given by
P, mn f €ml

S1

Xh,p-ds

Qn =f €11 XAy ds

S

()

Rearranging (3) into the scattering matrix formulation

5] ed] e

we have the scatter matrix elements given by

R m:‘/sll.e.ml Xhml'd‘g'

(5)

where

e

Su=[R+P7Q"'P]"'[R-PTQ" P

T

I~

S,=2[R+P"Q7'P]"

Su=2[Q+PR7'E"] P

S»==[Q+PR7'P"] "' [Q-PR™' P]. (6)

This equation gives the scattering matrix elements for
transmission through a discontinuity in radius of a circular
waveguide, assuming transmission is from the smaller to
the larger guide. If transmission is from the larger to the
smaller guide then (5) and (6) apply but with the scatter

matrix now given by
- [._Szz §21]
§12 §11 ’

The choice of mode ratio M /N is a crucial consideration.
If this ratio is chosen incorrectly then it is possible to
obtain a solution that is wrong no matter how many terms
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are taken or how convergent the result is. This problem of
relative convergence has been extensively dealt with in [8],
[9], [10] and it suffices to say that the condition M/N=
ay /ay (to the nearest rational number) must be satisfied if
the answers are to converge to the correct values.

Between the discontinuities in waveguide cross section in
Fig. 1(a) are short lengths of waveguide b, and d, making
up the slots and flanges of the corrugated structure. We
therefore need the scatter matrix of a length of waveguide.
This is particularly simple: for a waveguide of length /, and
taking N modes, the scatter matrix elements are §;,= S, =
0,81,=S8,, =V, where V' is an N XN diagonal matrix < with
elements ¥, =exp(— ynl), where vy, is the propagation
constant of the nth mode in the waveguide.

To obtain the overall scatter matrix S° of the corrugated
mode converter it is necessary to progressively cascade the
scatter matrices of the discontinuities in cross section and
the short lengths of waveguide as we advance through the
mode converter. For example, in cascading two scatter
matrices S and S® the elements of the combined matrix S
become B a

éllzéfz[g_éfl §] § 21+S11
So=stlI-sh sa] sk
ézl—S’z’l[!—éSz Sy 1] 851

S22_Slz71[!’§;2 § ] § 2S12+S22 (7)

where I is a unit matrix. Thus beginning with the first
discontinuity and short length of waveguide (i.e., the width
of the first slot), we continue this procedure repeatedly
through the mode converter until finally arriving at S°.

If it is assumed that a unit strength TE;; mode in the
smooth-walled input guide propagates towards the mode
converter and that both the input and output waveguides
terminate in matched loads, it follows, using the notation
in (5), that

mi—0form>1and 4;=0. .

Thus for the reflected modes we have B;= S”AI and for
the transmitted modes By = SZIAI Finally, in designing
mode converters we will optimize the return loss perfor-
mance of the TE,; mode which, expressed in decibels, is
given by 20log B;.

III. THE WAVEGUIDE MODES AND SOLUTIONS TO

THE INTEGRALS

The exciting mode in Fig. 1(a) is the TE,; mode in the
smooth-walled input guide, and therefore TE,, and TM,,
modes can be excited at each discontinuity in the mode
converter. In addition, if region II in Fig. 1(b) represents
the corrugated output waveguide, HE,, hybrid modes can
be excited. For the latter case, approximating the corru-
gated surface by a longitudinal surface reactance x, nor-
malized to the free-space impedance n=\/i/¢, the trans-
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Fig. 2. Root locus of hybrid modes beyond cutoff as a function of
decreasing longitudinal surface reactance x, of the corrugated wave-

guide. ——— Root locus of X,. - - - - Root locus of Xj;.

verse modal fields e, A,y of (2) can be written as [11]

J(V,
%Ennz_[jﬂ.ff(n)—r,, I(V;l")]f_)sinqb
JV,) -
+[F,,J{(Vn)'—j?,, I(Vn)]ti_wosqs
R L) .
hnII:[JrnYnjl(V;)_-l'V_]BCOSq)

V). .
+[J{(V,,)—1Tn7n5‘(,, )]?qui‘ (®)
where
V,=X,p/an
7n:[(Xn/(kan)f_1]1/2
_ 7;1 Jl(Xn)

"X, J(X,)

and X, are the (complex) roots of the characteristic equa-
tion. By satisfying the longitudinal surface reactance rela-
tionship x, =jE,(X,)/[nHy(X,)] at the corrugated surface
where the modal longitudinal electric field E,(X,)=
JnlX, /(kay)J(X,)sing, [11], we obtain the characteristic
equation

2]~ ()
9

If we make the assumption that only the dominant TE,
radial waveguide mode exists in the individual slots of the
corrugated output waveguide in Fig. 1(a), the solution for
the surface reactance becomes (noting in this case that
an=a,)

—[J;(Xn)]z}xz

Xn
kay

J(X)(X,).

Jl(kai)Yl(kaw)_ Yl(kai)Jl(kaw)
7/ (ka )Y, (ka, ) —Yi(ka 0 (ka) (1O

where § is the ratio of slot width to pitch given by

X:=——

b, /(b,+d,). When the surface reactance |x,|— oo, then
I'=1 (for HE,, modes) or —1 (for EH,, modes) and the
modes are said to be in the balanced hybrid condition.

Equation (8) represents hybrid modes when region II is
the corrugated output waveguide. For all cases where re-
gion II is a smooth-walled guide we have x, =0 and (8)
reduces to the expression for TE,, and TM,, modes. The
roots X, of (9) are then real, yielding alternatively:
the roots for the TE,, modes, where J{( X,)=0,T=o0; the
roots for the TM,, modes, where J(X,)=0=T. (With
X =0 equation (8) also gives the expressions for e,; and
k.1 in region I of Fig. 1(b) simply by replacing a;; with a;.)

At this juncture it is worth noting the interesting behav-
ior of the root locus of X, with change in the surface
reactance x, when the mode is beyond cutoff. An example
of the first two cutoff modes is shown in Fig. 2, where
ka; =3, and consequently only the dominant TE,, or HE,
mode can propagate in the waveguide. When x, =0 the
cutoff modes corresponding to the roots X, and X, are the
TM,, and TE, modes, respectively. As x, decreases from
zero in value we see from Fig. 2 that the locus of X, moves
rapidly along the real axis while the locus of X; moves
slowly along the real axis in the opposite direction. As x,
decreases further there is a point (dependent on the value
of ka,) where both roots rapidly acquire an imaginary
component but with opposite signs. When the balanced
hybrid mode condition is reached (where |x,|=o0) the
locus of X,(X;) is at the root of the balanced EH,, (HE,,)
mode. As noted previously, for balanced hybrid conditions
[2] these modal roots form a complex conjugate pair.

When x, decreases from + oo the root loci behave in a
similar fashion, as seen in the figure. If the value of ka, is
increased the imaginary components of the roots decrease
until cutoff is reached, when the balanced EH,, and HE,,
form a degenerate pair at the value of the TE,, root. As kaq;,
increases further the root loci of X, and X; move in
opposite directions along the real axis. (Only the first two
cutoff modes have been discussed here, but note that the
root loci of higher order hybrid modes behave similarly.)

Returning now to the transverse modal fields given by



JAMES: WAVEGUIDE MODE CONVERTERS

(8), we find that the integrals in (4) required for the scatter
matrix formulation can be evaluated analytically by mak-
ing use of known solutions to integrals containing Bessel
functions [12]. In region I of Fig. 1(b), where TE,,, and
TM,,, modes can be excited, let X, represent the roots of
(9) (with x, =0), and for region II, where the more general
HE,, and EH,, modes can be excited (depending on the
value of x,), let X,;; represent the roots of (9). With these
parameters the evaluation of the integrals in (4) becomes
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corrugated output waveguide designed to support the HE
mode. This mode is balanced at a frequency f;, chosen to
be near the center of the waveguide band (where typically
ka,=2.9). Using a corrugated structure the surface imped-
ance can be altered by changing the slot depth (starting
either from zero or a half-guide wavelength at a given
design frequency f; at the input to the converter), varying
the ratio of slot width to pitch, or a combination of both.

J(Xma/ay) DX Ji(X,nar/ay)
Pmn:nWJI(XmI) (Xl )I(;( v )— IZ] — HZ ’ m:1’3’5’
m1/ A1 a1/ 4n (XmI/aI) ‘(Xnn/“n)

JN7Y,, X,ud1/an 'Jo( XmI)Jl(XnIIaI/aII)

(11)

mn

(XmI/aI)Z_ (Xnn/an)2 ’

(XnII/aII)Z

'{le(XnII)[I‘n(l_:Y-nz)_%?n(l_i—rnz)(xnzll_z)]
— 17, X2 (14 T2)JH(Xm) } (12)
__ N7y, (Xr%zl_l) JH( Xou1)
(XmI/aI)2 X0 Jo (X1) ,

m=1,3,5,---
m=2,4,6, --- } (13)
For the corrugated output waveguide there exists the possi-
bility of the EH, slow wave mode being excited if x ,>0.
For a given value of inductive surface reactance a solution
of (9) exists where the root is purely imaginary, and this
characterizes the slow wave. The equations above for the
hybrid modes remain valid for this additional mode.

We note here that when the mode converter is followed
at the output by a uniform corrugated waveguide (as in
Fig. 1(a)) a discrepancy occurs in calculating the return
loss; this is caused by the surface having been approxi-
mated by the longitudinal surface reactance x, and by the
further approximation of this impedance by (10) above.
The problem arises when some of the slots and flanges of
the corrugated output waveguide are incorporated into the
analysis of the mode converter section. If the surface
reactance x, accurately describes the corrugated output
waveguide, then the calculated return loss should be inde-
pendent of the number of slots and flanges of the corru-
gated waveguide included in the transition section. Because
of the approximations however some variation in calcu-
lated return loss occurs, and in the results quoted below we
have given the “worst case” values obtained when calculat-
ing the return loss with part of the corrugated output-
waveguide structure included in the mode converter sec-
tion.

an

mm

IV. THEORETICAL PERFORMANCE

The purpose of the mode converter is to provide a
smooth change in x, from zero at the input waveguide
supporting the TE,; mode to a large value to match the

m=2,4,6, - --

Fig. 3 shows computed performance for a number of these
cases where the mode converters have seven slots. At the
frequency f, with ka, =2.9, the normalized slot radius ka,,
in the output waveguide is 4.7 (see Fig. 1(a)) to give,
ideally, |x,|= 0. The corrugated output waveguide pitch
p(=b,+d, )is 0.1 A;jand §=0.75.

Without a mode converter the return loss of the TE;
mode is shown by curve (i) in Fig. 3. Curve (ii) shows the
return loss computed for the case where x, increases from
zero through the use of a mode converter in which the slot
depths increase linearly from zero to the slot depth of the
output waveguide. It is seen that almost total reflection
occurs over the waveguide band in this case. This is caused
by unwanted slow waves generated in the transition section
by the inductive surface reactance created when the slot
depths increase from zero. If the slot depths decrease from
A,/2 at the input, slow waves will not, in general, be
excited, provided the frequency f, is chosen to avoid the
slow wave region at the higher frequencies of operation
where the slots become increasingly inductive, see [4]. The
resultant match achieved for this case is shown by curve
(iii) with f,=f,. Finally, when the slot depth is constant
and 8 increases from a small value at the input of the
converter to a value of 0.75 to match the corrugated output
waveguide, it is seen from curve (iv) that little improve-
ment in the return loss performance is achieved by the
insertion of the mode converter.

From these results it is evident that the use of slots of
decreasing depth offers the most potential for effective
mode conversion from TE,; to a HE,, hybrid mode. (In
fact, this practice has been used for some time in the
construction of feed horns at the CSIRO Division of
Radiophysics and elsewhere.) Some of the factors to be
considered in designing such a mode converter include the
number of slots required, the depth of the input slot, the
rate at which the slot depth varies, and the effect of pitch
and the ratio of width to pitch in the output waveguide. It
is also desirable that the mode converter be capable of
operating over a wide bandwidth.

An extensive theoretical investigation was undertaken to
consider all of these factors. From this study it was found
that five slots were necessary to achieve effective mode



1064

@4 \/ NN

(i

Return loss (dB)
N
o
T

30 - \ -~

=~ (iv)
+ ‘\
40 : /
¢ | 1 i L I\ 1 /I 1 | 1
2:4 2:6 2:8 30 3-2 3.4
ka,

Fig. 3. Theoretical return loss of a seven-slot corrugated converter sec-
tion placed between a smooth-walled and corrugated waveguide. (i)
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Fig. 4. Theoretical return loss of the five-slot TE,-to-HE,; mode con-
verters described in Table 1.

conversion. The total length / of the converter containing
these slots and the depth of the first slot were found to be
critical. Increasing the number of slots beyond five and
having moderate variation in slot width, pitch and 8 (pro-
vided the coverter length / remained unchanged from its
optimum value) had negligible effect on performance. A
linear variation of slot depth along the transition was
assumed since other variations, when tried, gave little or no
improvement.

In specifying mode converter details it is not possible to
consider all cases within the confines of this paper. Instead
we have chosen typical smooth-walled and corrugated
waveguide dimensions. As for the example given in Fig. 3,
we have assumed ka, =2.9 at the nominal waveguide-band
center frequency f,. With this value, the corrugated output
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TABLEI
CoMPUTED PARAMETERS FOR Two OPTIMIZED FIVE-SLoT TE{; —TO-
HE,, Mope CONVERTERS, EXPRESSED IN TERMS OF THE DESIGN
FREQUENCY f, WHERE ka, 1s 2.9 (SEE FI1G. 1(a)) (THE
CORRUGATED OUTPUT WAVEGUIDE HAS A PITCH OF 0.1\ ; IN CASE
(1) anND 0.2 5 1N CASE (if))

n Slot radius Slot width Flange width
(kay) (kby) (ka,)
cases (i) § (ii) (1) (ii) (i) (i1)
0 2.90
1 5.50 0.47 0.94 0.32 0.64
2 5.34 0.47 0.94 0.26 0.52
3 5.18 0.47 0.94 0.22 0.44
4 5.02 0.47 0.94 0.19 0.38
5 4,86 0.47 0.94 0.16 0.32
w 4.70 0.47 0.94 0.16 0.32

waveguide outer radius ka,, was 4.7 at f, while § was fixed
at 0.75. Two values of pitch p for the output waveguide
were considered: p=0.1A, and 0.2A (cases (i) and (ii)).
Optimum results were obtained when the depth of the first
slot of the converter was A; /2 at a frequency f, correspond-
ing to ka,=3.48. The converter length k/ was found to be
3.5 at f=f, for case (i) and 7.0 at f=F, for case (ii)." The
details of the five-slot optimum mode converter for these
two cases are given in Table 1. To facilitate manufacture,
all of the slots in the converter have the same width as the
slots in the corrugated output waveguide. Consequently, to
optimize the length / the flange width was varied linearly,
corresponding to a variation of § from 0.6 to 0.75 along the
converter.

Fig. 4 shows the computed TE,;, mode return loss for
both mode converters detailed in Table 1. It is seen that a
high value of return loss (particularly for case (i)) is
achieved over a reasonable bandwidth. Unfortunately it
does not appear to be possible to improve any further the
low-frequency performance of this type of cylindrical cor-
rugated-waveguide converter.

V. EXPERIMENTAL RESULTS

To test the validity of the theoretical development given
above, a number of experiments were performed to mea-
sure the return loss of a circular waveguide system consist-
ing of a corrugated waveguide section placed between two
smooth-walled waveguides. (This avoids the practical prob-
lem of achieving a well-matched terminated corrugated
waveguide.) The dimensions of the slots and flanges in the
corrugated section could be varied. Preceding the input
waveguide was a circular-to-rectangular waveguide transi-

Tt must not be inferred from this result that a linear relationship
always exists between k/ and the value of the output waveguide pitch. This
was found not to be the case in general.
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Fig. 5. Experiment to assess the performance of the optimized converter
given by case (i) in Table 1. (a) Cross-sectional view of the waveguide
system. (b) Return loss performance: Measured with waveguide
as shown in (a). — - — Theory with waveguide as shown in (a). —@—
Measured with mode converters II and IV removed. — X — Theory
with mode converters II and IV removed. - - - - Measured return loss of
loaded circular waveguide without the corrugated sections II, III, and
Iv.

tion section to enable the return loss to be measured using
standard X-band or Ku-band rectangular waveguide com-
ponents. The examples tested ranged from single slots or
flanges of various dimensions up to a 22-slot unit. For the
latter case the theoretical calculation required the cascad-
ing of 87 scatter matrices at each frequency for which the
return loss was calculated. Including in the analysis up to
12 modes in the input waveguide sufficed to produce
excellent agreement between theory and experiment in all
cases, particularly when the return loss was substantially
lower than the inherent return loss in the experimental
setup, which was typically =35 dB, except at the upper
edge of the band, where it decreased to around 30 dB.

In the examples shown in Fig. 4 the high value of the
predicted return loss makes it difficult to verify the perfor-
mance experimentally. As an attempt to assess the perfor-
mance of these optimized converters, it was decided to use
the following experimental technique. Two identical mode
converters with parameters as given for case (i) in Table I
were constructed to operate with 15 GHz as the design
frequency f,. We also had a short section (11 slots) of
uniform corrugated waveguide accurately machined. These
units were connected between the two smooth-walled cir-
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cular waveguides I and V as shown in Fig. 5(a) to give
double mode-conversion, viz., TE,; to HE; back to TE,,.
The output circular waveguide V was loaded by a long
wooden load and the return loss of the input TE,, mode
was measured over a band extending +20 percent about
the center frequency. A similar measurement was made
with the two mode converters (Il and IV in Fig. 5(a))
removed. The results are shown in Fig. 5(b). Although
there will be interference between the two mode converters
in the first measurement and between the smooth-to-
corrugated waveguide junctions in the second measure-
ment, the pair of results at least give a qualitative measure
of the effectiveness of the five-slot mode converter. The
results show that the mode converter gives the predicted
substantial improvement in the match. (To avoid confusion
between the curves we have not plotted the results below
13.5 GHz for the case where the mode converters are
absent.) Agreement between theory and experiment is gen-
erally very good, except at the upper end of the band,
where the results are confused by the level of the inherent
return loss of the experimental setup.

. VL

An extensive theoretical investigation has been pre-
sented, with experimental verification, of a TE,,-to-HE,
mode converter consisting of a section of corrugated cylin-
drical waveguide with varying slot depths. The approach
used was to evaluate by modal field-matching techniques
the overall scatter matrix of the mode converter from
which the transmission properties of the converter could be
determined. It was found that a mode converter consisting
of only five slots achieved a return loss of >30 dB over the
band 2.7<ka,<3.8.

CONCLUSION
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Surface Waves and their Relation to the |
Eigenfrequencies of a Circular-Cylindrical
Cavity

I V. SUBRAHMANYAM GREGORY A. H. COWART, MUSTAFA KESKIN, HERBERT UBERALL,
GUILLERMO C. GAUNAURD, aND EUGENIA TANGLIS

Abstract—The eigenfrequencies of a finite-length cylindrical cavity may
be interpreted as the resonances caused by the phase-matching of cir-
cumferential waves that circamnavigate the cavity along certain helical
paths, and that get reflected back and forth from its top and bottom flat
surfaces. In this paper, we obtain the dispersion curves of these
cicumferential waves that correspond to a series of well-defined pitch
angles of their helix for different values of the cylindrical cavity’s length-
to-radius ratio.

I. INTRODUCTION

HE ANALYSIS of electromagnetic cavity resonators
has been the subject of much previous work [1]. We
shall consider here the case of a finite cylindrical cavity in
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a conducting medium, for which the Dirichlet boundary
condition at its surface leads to transverse magnetic (TM)
wave propagation, and the Neumann boundary condition
leads to transverse electric (TE) wave propagation [2].

The exact expressions [2] for the finite cylindrical cavity’s
eigenfrequencies corresponding to the two mentioned cases
are obtained in the conventional way from satisfying the
appropriate boundary conditions. Consider the cavity to be
filled with a uniform nondissipative medium having dielec-
tric constant € and permeability p. With a harmonic time
dependence e '“’ ‘for the fields inside the cavity, the
Maxwell equations yield

(V2+k*)E=0 (Vv?*+k?)B=0
k=pew’/cl

(1a)
(1b)
where ¢, is the speed of light in vacuo. The results come out
in terms of standing waves with half-integer multiples of
the axial wavelength along the cylinder’s length and with
integer multiples of azimuthal wavelength around the cyl-
inder’s circumference, while the radial boundary condition
introduces the roots of the Bessel functions. If the corre-
sponding solutions for the surface field of the cavity are
transformed using the Watson—Sommerfeld method, they
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