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boundary condition EZ = O

Br(ro)=O=E,(ro) or J.(~~rO) =0. (76)

We consider now the case m =0. Comparing (64), (66),

(68), (71), (73), and (75) with (52)-(54) we find that the

latter solution corresponds to a superposition of the TE

parts’ of B, and B= and the TM part of Bq. We use,

however, only the last term giving from rBv = const for the
“mode” k= f)

r~l ( yr ) = const (77)

(corresponding to a waveguide with cross section r=const)

and for k= 1 (TMOI mode) we obtain

~~1(~~).osz=const (78)

which describes the surfaces on which B,= Ew = O and into

which metallic walls may be inserted without disturbing the

field patterns.
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Analysis and Design of TE1l-to-HE1l
Corrugated Cylindrical Waveguide Mode

Converters

GRAEME L. JAMES

A bstract— A theoretical parametric study is given of a TE ~l-to-HE II wavegnide) with the HE,1 mode in the balanced condition at ka = 2.9. The

mode converter consisting of a section of cytindricaf corrugated wavegnide prdlcted resssfts are in very good agreement with experimental data.

with varying slot depth. The anatysis makes use of modat field-matching

“ tecluiaues to detersnine the scatter matrix of the mode converter from I. INTRODUCTION
which we deduce its propagation properties. It is shown that a mode

converter consisting of only five slots achieves a return loss better than 30 I N DESIGNING corrugated horns which use a section

dB over the band 2.7 <ka< 3.8 (where a is the intemaf radius of the of cylindrical corrugated waveguide at the input, it is
necessary to study the transition from a smooth-walled
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an anisotropic surface impedance, the propagation behav-

ior through an abrupt junction between smooth-walled and

corrugated guides can be solved either by numerical proce-

dures using mode-matching techniques [1], [2] or by an

analytical approach using the Wiener– Hopf method [3].

Such a junction between the two guides however often

yields unacceptably low return-loss values for the TE,,

mode. To achieve better mode conversion a corrugated

transition section can be used where, by gradual variation

of the slot depth, the longitudinal surface reactance x, is

made to change smoothly from zero at the smooth-walled

input guide to the high value required in the corrugated

output waveguide [4]. Our purpose here is to optimize the

design of such a converter to achieve maximum mode

conversion (i.e., minimum reflection of the TE,, mode)

over as wide a band as possible.

One method of analysing the performance of the TE, l-to

-HE,, corrugated waveguide mode converter is to assume a

waveguide with smoothly varying impedance of the walls

[5]. The pitch of the corrugations however must be small

compared to a wavelength (particularly where the imped-

ance is changing rapidly) before this assumption is valid.

However, in our case we wish to minimize the number of

slots required in the mode converter and therefore we have

taken a different approach in” our analysis. First we de-

termine the individual scatter matrices for each of the

changes in waveguide cross section and for each of the

short lengths of waveguide separating them which go to

make up the slots and flanges of the corrugated transition

section. Then by progressively cascading the scatter

matrices through this section we obtain an overall scatter

matrix from which we can determine the propagation

properties of the mode converter.

Objections to such a scheme could be the need for

excessive computer time and the possibility y of accumula-

tive errors occurring in solving for the overall scatter

matrix. Fortunately these difficulties do not arise since all

of the integrals required in the formulation can be evaluated

analytically (as shown in Section III below), and only a

modest number of waveguide modes are required to achieve

satisfactory convergence.

II. FORMULATION

The mode converter to be analysed is shown in Fig. l(a),

where, following the smooth-walled cylindrical input wave-

guide supporting the TE,, mode, there is a section contain-

ing L slots. The depth, width, and separation of these slots

are to be determined from our analysis to give the opti-

mum mode conversion to the HE,, mode in the corrugated

output waveguide following the Lth slot. As mentioned

above, w-e consider each change in waveguide cross section

in isolation (Fig. 1(b)) to determine its scatter matrix. Since

the waveguide discontinuity problem as shown in Fig. l(b)

has been solved in [6]-[8] using mode-matching methods,

we shall only briefly describe the procedure here before

giving the scatter matrix for the junction between two

circular waveguides.

1—.-— . . .
Smooth-walled Corrugated mode cwert.er Corrugated cyl,ndrvcol

circular wavegulde wavegulde
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-———.
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Fig. 1. Cross-sectional view of circular waveguides. (a) Corrugated mode

converter section at the junction between a smooth-watled and corru-

gated waveguide. (b) Junction between two smooth-walled waveguides

of differing radius.

In region I of Fig. l(b) let the transverse field ~1, HI at
z =() be represented by the modal solution

M

(1)

where g~I, ~ ~1 are transverse modal fields (to be described

in Section III) and A~I, 11~1 are the forward and reflected

modal coefficients to be determined. The upper limit M is. .
to be made sufficiently large to ensure convergence.

Similarly for region II we have the transverse field at

z = O given by

N

~=1

(2)
~=1

where xt~II, 11~11are the forward and reflected modal coeffi-
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cients looking into the junction at z= 0,

Let SI (sII) be the cross-sectional area of the waveguide

of radius UI (aII). Making use of the orthogonality of the

waveguide modes, the continuity of fields over SI, and the

boundary conditions over SII –sI (assuming that SII ZSI),

we obtain the following pair of simultaneous matrix equa-

tions

(3)

where AI, BI are column matrices of M elements contain-. .
ing the unknown modal coefficients (A, ~ . . . A ~1 ),
(B,,.. . B~l) of region I. Similarly ~11, ~11 are column

matrices of N elements containing t~e u~known modal

coefficients in region II. P is an N X M matrix, Q is an

N X N diagonal matr~x and ~ is an ~ X M

diagonal matrix. The elements in the= last three matrices

are given by

Rearranging (3) into the scattering matrix formulation

;=SA—— (5)——

where

~=

we have thf

i] 4=[tI]‘=[i:$:
scatter matrix elements given by

~,, =[~+<TQ-l~]-’ [~–~TQ-l ~]— —— —.

&U=2[R+PTQ-’p]-lpT— — .=—

!Z1=2[Q+PR-lPT]-l P—— — .—

~22=–[Q+H-l~T]-’ [Q–PR-’ &].—— (6)— —— — ——— —

This equation gives the scattering matrix elements for

transmission through a discontinuity in radius of a circular

waveguide, assuming transmission is from the smaller to

the larger guide. If transmission is from the larger to the

smaller guide then (5) and (6) apply but with the scatter

matrix now given by

The choice of mode ratio M/N is a crucial consideration.

If this ratio is chosen incorrectly then it is possible to

obtain a solution that is wrong no matter how many terms

are taken or how convergent the result is. This problem of

relative convergence has been extensively dealt with in [8],

[9], [10] and it suffices to say that the condition M/N=

al /aII (to the nearest rational number) must be satisfied if

the answers are to converge to the correct values.

Between the discontinui~ies in waveguide cross section in

Fig. l(a) are short lengths of waveguide b. and dn making

up the slots and flanges of the corrugated structure. We

therefore need the scatter matrix of a length of waveguide.

This is particularly simple: for a waveguide of length 1, and

taking N modes, the scatter matrix elements are &l, = 122=

~, &2 = ~21 = ~, where ~ is an NX N diagonal matrix with

ele–ments V~~= exp ( —y~1), where ym is the propagation

constant of the n th mode in the waveguide.

To obtain the overall scatter matrix so of the corrugated

mode converter it is necessary to prog~essively cascade the

scatter matrices of the discontinuities in cross section and

the short lengths of waveguide as we advance through the

mode converter. For example, in cascading two scatter

matrices S“ and Sb the elements of the combined matrix S

become = =
.

S22=S;1[5S;2 S’1]-’s22s?2+s;2 (7)— — —— —

where I is a unit matrix. Thus beginning with the first

discon&uity and short length of waveguide (i.e., the width

of the first slot), we continue this procedure repeatedly

through the mode converter until finally arriving at SO.

If it is assumed that a unit strength TE1, mode% the

smooth-walled input guide propagates towards the mode

converter and that both the input and output waveguides

terminate in matched loads, it follows, using the notation

in (5), that

A1l=l, AtiI=Ofornz>l and~IIy~. —

Thus for the reflected modes we have &= ~~1AI and for
the transmitted modes &I =~~l~l. Fi~ally~in–designing

mode converters we wil~ optlmiz~ the return loss perfor-

mance of the TE ~, mode which, expressed in decibels, is

given by 20 log BII.

III. THE WAVEGUIDE MODES AND SOLUTIONS TO

THE INTEGRALS

The exciting mode in Fig. l(a) is the TE ~, mode in the

smooth-walled input guide, and therefore TE,. and TM ~~
modes can be excited at each discontinuity in the mode

converter. In addition, if region 11 in Fig. 1(b) represents

the corrugated output waveguide, HE ~~ hybrid modes can

be excited. For the latter case, approximating the corru-

gated surface by a longitudinal surface reactance x= nor-

malized to the free-space impedance TJ= @, the trans-
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Fig. 2. Root locus of hybrid modes beyond cutoff as a function of

decreasing longitudinal surface reactance x= of the corrugated wave-
guide. –— Root 10CUSof X2. ---- Root 10CUSOf X3.

verse modal fields gHII, &zII of (2) can be written as [11]

[

JI(K)
:%11= – ~~n~{(~n)–rny

1

~ sin@
n—

[ 1J1(K) -+ rn~{(~)--j7n~ C#JCos@
n—

[

JI(K)
lmI = ~r.7nJ{(K)– ~

[
+ J{(Vn)

where

V.= X.p/all

p Cos t)
—

Jr,(~)”
-— ~sin@ (8)-jrn~n v

n,—

[
“ 1/2

7.= (x. /(% I))2-l–

rn _ 7. Jl(z)

X Ji( L )

and X. are the (complex) roots of the {characteristic equa-

tion. By satisfying the longitudinal surface ~eactance rela-

tionship x= ‘jEZ( Xn )/[qH,& Xn )] at the corrugated surface
where the modal longitudinal electric field E=( X. ) =

~~[ X. /(kall)] Jl( X. ) sin +, [1 1], we obtain the characteristic
equation

{[*T[l-(*TI-’J{(X)’21XZ
——~Ji(%)Jl(-K). (9)

II

If we make the assumption that only the dominant TE1

radial waveguide mode exists in the individual slots of the

corrugated output waveguide in Fig. 1(a), the solution for

the surface reactance becomes (noting in this case that

all =ai)

J1(kai)Y1(kaW)–- Y1(kaj)Jl(ka~)
xz=–~ Jj(ka, )Y1(kaW ) – Y((k~~j)Jl(ka~)

(lo)

where 8 is the ratio of slot width to pitch given by

k/(% + ~~). whenthe s~face reactance Ix, I + m, then
r= 1 (for HE1~ modes) or – 1 (for EHl~ modes) and the

modes are said to be in the balanced hybrid condition.

Equation (8) represents hybrid modes when region II is

the corrugated output waveguide. For all cases where re-

gion II is a smooth-walled guide we have x= =0 and (8)

reduces to the expression for TE,. and TM1. modes. The

roots X. of (9) are then real, yielding alternatively:

the roots for the TEl~ modes, where J{( X.) = O, r = m; the

roots for the TMl~ modes, where Jl( X. ) = O= r. (With

x== O equation (8) also gives the expressions for g~I and

&~I in region I of Fig. l(b) simply by replacing all with aI.)

At this juncture it is worth noting the interesting behav-

ior of the root locus of X. with change in the surface

reactance x= when the mode is beyond cutoff. An example

of the first two cutoff modes is shown in Fig. 2, where

kai = 3, and consequently only the dominant TEI, or HEI ~

mode can propagate in the waveguide. When X== O the

cutoff modes corresponding to the roots X2 and X3 are the

TM, ~ and TE12 modes, respectively. As x= decreases from

zero in value we see from Fig. 2 that the locus of X2 moves

rapidly along the real axis while the locus of X3 moves

slowly along the real axis in the opposite direction. As X=

decreases further there is a point (dependent on the value

of ka, ) where both roots rapidly acquire an imaginary

component but with opposite signs. When the balanced

hybrid mode condition is reached (where Ix= I= co) the

locus of X2( X,) is at the root of the balanced EH12 (HE I,)

mode. As noted previously, for balanced hybrid conditions

[2] these modal roots form a complex conjugate pair.

When x= decreases from + co the root loci behave in a

similar fashion, as seen in the figure. If the value of ka, is

increased the imaginary components of the roots decrease

until cutoff is reached, when the balanced EH 12 and HE 12

form a degenerate pair at the value of the TEIZ root. As kai

increases further the root loci of Xz and X3 move in

opposite directions along the real axis. (Only the first two

cutoff modes have been discussed here, but note that the

root loci of higher order hybrid modes behave similarly.)

Returning now to the transverse modal fields given by
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(8), we find that the integrals in (4) required for the scatter

matrix formulation can be evaluated analytically by mak-

ing use of known solutions to integrals containing Bessel

functions [12]. In region I of Fig. l(b), where TE1~ and

TM1~ modes can be excited, let X~I represent the roots of
(9) (with ~Z =0), and for region II, where the more general

HEl~ and EHl~ modes can be excited (depending on the
value of XZ ), let XHII represent the roots of (9). With these

parameters the evaluation of the integrals in (4) becomes

1063

corrugated output waveguide designed to support the HE 1I

mode, This mode is balanced at a frequency ~., chosen to

be near the center of the waveguide band (where typically

ka, = 2.9). Using a corrugated structure the surface imped-

ance can be altered by changing the slot depth (starting

either from zero or a half-guide wavelength at a given

design frequency fi at the input to the converter), varying

the ratio of slot width to pitch, or a combination of both.

‘1( ‘.11%/%1) _ Jrn~nXmIJ~(XnIIaI/aII) ,P~m=~TJ1(XM1)
(JL/al)(%ll/all) (X~l/a1)2– (Xnll/a11)2

~= 1,3,5, . . .

p= j~T~mX.llal/all “JO( &I) Jl(xnIIaI/aII) ,
. m=2.4.6. ,-. 1

(11)

m=l,3,5, . . . 1 (13)
m=2,4,6, . . . “

For the corrugated output waveguide there exists the possi-

bility of the EH1 slow wave mode being excited if x, >0.

For a given value of inductive surface reactance a solution

of (9) exists where the root is purely imaginary, and this

characterizes the slow wave. The equations above for the

hybrid modes remain valid for this additional mode.

We note here that when the mode converter is followed

at the output by a uniform corrugated waveguide (as in

Fig. 1(a)) a discrepancy occurs in calculating the return

loss; this is caused by the surface having been approxi-

mated by the longitudinal surface reactance x, and by the

further approximation of this impedance by (10) above.

The problem arises when some of the slots and flanges of

the corrugated output waveguide are incorporated into the

analysis of the mode converter section. If the surface

reactance x= accurately describes the corrugated output

waveguide, then the calculated return loss should be inde-

pendent of the number of slots and flanges of the corru-

gated waveguide included in the transition section. Because

of the approximations however some variation in calcu-

lated return loss occurs, and in the results quoted below we

have given the “worst case” values obtained when calculat-

ing the return loss with part of the corrugated output-

waveguide structure included in the mode converter sec-

tion.

IV. THEORETICAL PERFORMANCE

The purpose of the mode converter is to provide a

smooth change in x, from zero at the input waveguide

supporting the TE ~, mode to a large value to match the

.>

J
Fig. 3 shows computed performance for a number of these

cases where the mode converters have seven slots. At the

frequency ~0 with ka, = 2,9, the normalized slot radius kaW

in the output waveguide is 4.7 (see Fig. l(a)) to give,

ideally,’ IXZ I = co. The corrugated output waveguide pitch

p(=bW+dW) is 0.1 XO and8=0.75.
Without a mode converter the return loss of the TE, ~

mode is shown by curve (i) in Fig. 3. Curve (ii) shows the

return loss computed for the case where x= increases from

zero through the use of a mode converter in which the slot

depths increase linearly from zero to the slot depth of the

output waveguide. It is seen that almost total reflection

occurs over the waveguide band in this case. This is caused

by unwanted slow waves generated in the transition section

by the inductive surface reactance created when the slot

depths increase from zero. If the slot depths decrease from

A, /2 at the input, slow waves will not, in general, be

excited, provided the frequency ~ is chosen to avoid the

slow wave region at the higher frequencies of operation

where the slots become increasingly inductive, see [4]. The

resultant match achieved for this case is shown by curve

(iii) with f =~o. Finally, when the slot depth is constant

and 8 increases from a small value at the input of the

converter to a value of 0.75 to match the corrugated output

waveguide, it is seen from curve ( io ) that little improve-

ment in the return loss performance is achieved by the

insertion of the mode converter.

From these results it is evident that the use of slots of

decreasing depth offers the most potential for effective

mode conversion from TE,, to a HE, ~ hybrid mode. (In

fact, this practice has been used for some time in the

construction of feed horns at the CSIRO Division of

Radiophysics and elsewhere.) Some of the factors to be

considered in designing such a mode converter include the

number of slots required, the depth of the input slot, the

rate at which the slot depth varies, and the effect of pitch

and the ratio of width to pitch in the output waveguide. It

is also desirable that the mode converter be capable of

operating over a wide bandwidth.

An extensive theoretical investigation was undertaken to

consider all of these factors. From this study it was found

that five slots were necessary to achieve effective mode
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Fig. 3. Theoretlcat return loss of a seven-slot corrugated converter sec-
tion placed between a smooth-walled and corrugated waveguide. (i)
Return loss without the converter section. (ii ) Converter with slot
depths increasing from zero. (al ) Converter with decreasing slot depths,
beginning with A ~/2 at the input (/0 is the center frequency where
ka, = 2.9). (io) Converter with constant slot depth but with variable 8.
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Fig. 4. Theoretical return loss of the five-slot TE1, -to-HEl, mode con-
verters described in Table I.

conversion. The total length 1 of the converter containing

these slots and the depth of the first slot were found to be

critical. Increasing the number of slots beyond five and

having moderate variation in slot width, pitch and 8 (pro-

vided the coverter length 1 remained unchanged from its

optimum value) had negligible effect on performance. A

linear variation of slot depth along the transition was

assumed since other variations, when tried, gave little or no

improvement.

In specifying mode converter details it is not possible to

consider all cases within the confines of this paper. Instead

we have chosen typical smooth-walled and corrugated

waveguide dimensions. As for the example given in Fig. 3,

we have assumed ka, =2.9 at the nominal waveguide-band

center frequency & With this value, the corrugated output

TABLE I

COMPUTED PARAMETERS FOR Two OPTIMIZED FIVE-SLOT TET, – TO–

HE], MODE CONVERTERS, EXPRESSED IN TERMS OF THE DESIGN

FREQUENCY~O WHERE ka, 1s 2.9 (SEE FIG. l(a)) (THE

CORRUGATED OUTPUT WAVEGUIDE HAS A PITCH OF 0.1 k. IN CASE

(i) AND 0.2A0 IN CASE (ii))

n Slot radius Slot width Flange width
(kan) (kbn) (kdn)

cases (i) & (ii) (i) (ii) (i) (ii)

o 2.90

1 5.50 0.47 0.94 0.32 0.64

2 5.34 0.47 0.94 0.26 0.52

3 5.18 0.47 0.94 0.22 0.44

4 5.02 0.47 0.94 0.19 0.38

5 4.86 0.47 0.94 0.16 0.32

w 4.70 0.47 0.94 0.16 0.32

waveguide outer radius ka ~ was 4.7 at f., while 8 was fixed

at 0.75. Two values of pitch p for the output waveguide

were considered: p= O.lAO and 0.2A0 (cases (i) and (ii)).

Optimum results were obtained when the depth of the first

slot of the converter was A i /2 at a frequency j correspond-

ing to ka, =3.48. The converter length kl was found to be

3.5 at f =fo for case (i) and 7.0 at f =fo for case (ii). 1 The

details of the five-slot optimum mode converter for these

two cases are given in Table I. To facilitate manufacture,

all of the slots in the converter have the same width as the

slots in the corrugated output waveguide. Consequently, to

optimize the length 1 the flange width was varied linearly,

corresponding to a variation of 8 from 0.6 to 0.75 along the

converter.

Fig. 4 shows the computed TEI, mode return loss for

both mode converters detailed in Table I. It is seen that a

high value of return loss (particularly for case (i)) is

achieved over a reasonable bandwidth. Unfortunately it

does not appear to be possible to improve any further the

low-frequency performance of this type of cylindrical cor-

rugated-waveguide converter.

V. EXPERIMENTAL RESULTS

To test the validity of the theoretical development given

above, a number of experiments were performed to mea-

sure the return loss of a circular waveguide system consist-

ing of a corrugated waveguide section placed between two

smooth-walled waveguides. (This avoids the practical prob-

lem of achieving a well-matched terminated corrugated

waveguide.) The dimensions of the slots and flanges in the

corrugated section could be varied. Preceding the input

waveguide was a circular-to-rectangular waveguide transi-

1It must not be inferred from this result that a linear relationship
always exists between kl and the value of the output waveguide pitch. This
was found not to be the case in general.



J-s: WAVEGUIDE MODE CONVERTERS
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Fig. 5. Experiment to assess the performance of the optimized converter

given by case (i) in Table I. (a) Cross-sectionaf view of the waveguide

system. (b) Return loss performance: — Measured with waveguide

as shown in (a). — - — Theory with waveguide as shown in (a). —.—

Measured with mode converters II and IV removed. — X — Theory

with mode converters II and IV removed. ---- Measured return loss of
loaded circular waveguide without the corrugated sections II, III, and

IV.

tion section to enable the return loss to be measured using

standard X-band or Ku-band rectangular waveguide com-

ponents, The examples tested ranged from single slots or

flanges of various dimensions up to a 22-slot unit. For the

latter case the theoretical calculation required the cascad-

ing of 87 scatter matrices at each frequency for which the

return loss was calculated. Including in the analysis up to

12 modes in the input waveguide sufficed to produce

excellent agreement between theory and experiment in all

cases, particularly when the return loss was substantially

lower than the inherent return loss in the experimental

setup, which was typically Z 35 dB, except at the upper

edge of the band, where it decreased to around 30 dB.

In the examples shown in Fig. 4 the high value of the

predicted return loss makes it difficult to verify the perfor-

mance experimentally. As an attempt to assess the perfor-

mance of these optimized converters, it was decided to use

the following experimental technique. Two identical mode

converters with parameters as given for case (i) in Table I
were constructed to operate with 15 GHz as the design

frequency ~o. We also had a short section (11 slots) of

uniform corrugated waveguide accurately machined. These

units were connected between the two smooth-walled cir-
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cular waveguides I and V as shown in Fig. 5(a) to give

double mode-conversion, viz., TE ~, to HE1 ~ back to TE,,.

The output circular waveguide V was loaded by a long

wooden load and the return loss of the input TEI, mode

was measured over a band extending &20 percent about

the center frequency. A similar measurement was made

with the two mode converters (II and IV in Fig. 5(a))

removed. The results are shown in Fig. 5(b). Although

there will be interference between the two mode converters

in the first measurement and between the smooth-to-

corrugated waveguide junctions in the second measure-

ment, the pair of results at least give a qualitative measure

of the effectiveness of the five-slot mode converter. The

results show that the mode converter gives the predicted

substantial improvement in the match. (To avoid confusion

between the curves we have not plotted the results below

13.5 GHz for the case where the mode converters are

absent.) Agreement between theory and experiment is gen-

erally very good, except at the upper end of the band,

where the results are confused by the level of the inherent

return loss of the experimental setup.

VI. CONCLUSION

An extensive theoretical investigation has been pre-

sented, with experimental verification, of a TEI, -to-HEl,

mode converter consisting of a section of corrugated cylin-

drical waveguide with varying slot depths. The approach

used was to evaluate by modal field-matching techniques

the overall scatter matrix of the mode converter from

which the transmission properties of the converter could be

determined. It was found that a mode converter consisting

of only five slots achieved a return loss of >30 dB over the

band 2.7<ka, <3.8.
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Surface Waves and their Relation to the
Eigenfrequencies of a Circular–Cylindrical

Cavity

J. v. SUBRAHMANYAM, GRE&ORY A. H. COWART, MUSTAFA KESKIN, HERBERT UBERALL,

GUILLERMO C. GAUNAURD, AND EUGENIA TANGLIS

Alsstract-The eigenfrequenciesof a finhe-lerrgtfr cylindrical cavity may
be interpreted as the resonances caused by the phase-matcfdng of cir-

cumferential waves that circumnavigate the cavity along certain helicaf

paths, and that get reflected back and forth from its top and bottom flat

surfaces. In this paper, we obtain the dkpersion curves of these

circumferential waves that correspond to a series oj well-defined pitch

angles of their helix for different values of the cylindrical cavity’s lerrgth-

to-radius ratio.

1. INTRODUCTION

T HE ANALYSIS of electromagnetic cavity resonators

has been the subject of much previous work [1]. We

shall consider here the case of a finite cylindrical cavity in
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a conducting medium, for which the Dirichlet boundary

condition at its surface leads to transverse magnetic (TM)

wave propagation, and the Neumann boundary condition

leads to transverse electric (TE) wave propagation [2].

The exact expressions [2] for the finite cylindrical cavity’s

eigenfrequencies corresponding to the two mentioned cases

are obtained in the conventional way from satisfying the

appropriate boundary conditions. Consider the cavity to be

filled with a uniform nondissipative medium having dielec-

tric constant c and permeability p. With a harmonic time

dependence e ‘i@’ for the fields inside the cavity, the

Maxwell equations yield

(v’+k’)E=o (v’+k’)B=o (la)

k=pcw2/c: (lb)

where COis the speed of light in oacrm. The results come out

in terms of standing waves with half-integer multiples of

the axial wavelength along the cylinder’s length and with

integer multiples of azimuthal wavelength around the cyl-

inder’s circumference, while the radial boundary condition

introduces the roots of the Bessel functions. If the corre-

sponding solutions for the surface field of the cavity are

transformed using the Watson– Sommerfeld method, they
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